Автомобильный портал - Фаворит
  • Главная
  • Тормозная
  • Количественный анализ воды. Поиск по запросу: количественный химический анализ вод

Количественный анализ воды. Поиск по запросу: количественный химический анализ вод

МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ
И ПРИРОДНЫХ РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ ИОНОВ НИКЕЛЯ
В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД
МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ

ПНД Ф 14.1:2:4.73-96

Методика допущена для целей государственного экологического контроля.

Москва 1995 г.

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Минприроды РФ

Главный метролог Минприроды РФ

Начальник ГУАК Г.М. Цветков.

1. НАЗНАЧЕНИЕ.

Настоящий документ устанавливает методику количественного химического анализа проб природных, питьевых и сточных вод для определения в них ионов никеля при массовой концентрации никеля от 1 до 2500 мкг/дм 3 . При определении содержания ионов никеля (II) в пробах вод концентрация органического углерода в электролизере электрохимической ячейки не должна превышать 10 мг/дм 3 . Мешающее влияние органической составляющей вод при содержании органического углерода выше 10 мг/дм 3 устраняется обработкой пробы ультрафиолетовым облучением. Мешающее влияние 100-кратного избытка ионов меди (II), 50-кратного избытка ионов кадмия (II ) и 10-кратного избытка ионов Со (II) устраняют добавлением пиридина.

2. НОРМЫ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ.

Нормы погрешности измерений массовой концентрации ионов никеля регламентированы ГОСТ 27384-87 «Вода. Нормы погрешности измерений показателей состава и свойств».

3. ЗНАЧЕНИЯ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ.

Методика количественного химического анализа обеспечивает с вероятностью Р = 0,95 получение результатов анализа массовых концентраций ионов никеля с погрешностью, не превышающей значений, приведенных в таблице .

Таблица 1

Значения характеристики погрешности измерений и ее составляющих.

4.3. Мешалка магнитная.

4.4. Весы лабораторные аналитические общего назначения с наибольшим пределом взвешивания 200 г, 2-го класса точности по ГОСТ 24104 .

4.5. Колбы мерные наливные стеклянные 2-го класса точности по ГОСТ 1770-74 исполнения 1 или 2 вместимостью 1000 см 3 , 100 см 3 , 50 см 3 и 25 см 3 с притертыми пробками; цилиндры вместимостью 50 см 3 и 25 см 3 .

4.6. Пипетки мерные лабораторные стеклянные 2-го класса точности по ГОСТ 20292-74, вместимостью 10 см 3 исполнения 2 или 3, вместимостью 5 см 3 исполнения 1, вместимостью 1 см 3 исполнения 4 или 5.

4.7. Дозаторы типа ПЛ-01-20, ПЛ-01-200, ПЛ-01-100 или другие с дискретностью установки доз 1,0 или 2,0 мкл.

4.8. Аппарат для приготовления бидистиллированной воды (стеклянный) типа АСД-4 по ГОСТ 15150-69 , ТУ 25-1173, 103-84

4.9. Установка для обработки проб ультрафиолетовым облучением типа 705 UV -Digester («Metrohm», Швейцария).

4.10. pH-метр-милливольтметр типа pH-150.

4.11. Установка для фильтрования под вакуумом с приспособлением для создания вакуума.

4.12. Резец керамический.

5. РЕАКТИВЫ И МАТЕРИАЛЫ.

5.1. Государственный стандартный образец (ГСО) состава водных растворов ионов никеля (II) с погрешностью не более 1 % отн. при Р = 0,95 с концентрацией 1 мг/см 3 .

7.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019 .

7.3. Организация обучения работающих безопасности труда по ГОСТ 12.04.004.

7.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

8. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ.

Выполнение измерений может производить химик-аналитик, владеющий техникой вольтамперометрического анализа и изучивший инструкцию по эксплуатации анализатора инверсионного вольтамперометрического.

9. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ.

Измерения проводятся в нормальных лабораторных условиях.

Температура окружающего воздуха 20 ± 10 °С.

Атмосферное давление (97 ± 10) кПа.

Относительная влажность (65 ± 15) %.

Частота переменного тока (50 ± 5) Гц.

Напряжение в сети (220 ± 10) В.

10. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ.

10.1. Отбор и хранение проб воды.

10.1.1. Химическую посуду, применяемую в процессе анализа и для отбора проб, обезжиривают 10 % водным раствором едкого натрия в течение 10 - 12 часов, промывают бидистиллированной водой, затем промывают раствором 1 моль/дм 3 азотной кислоты и ополаскивают бидистиллированной водой. Затем посуду обрабатывают концентрированной серное кислотой, промывают тридистиллированной водой, заливают хлористоводородной кислотой квалификации ос.ч. разбавленной тридистиллированной водой в соотношении 1:100, выдерживают в течение 2 - 3-х часов, после чего вновь промывают тридистиллированной водой.

10.1.2. Пробы воды отбирают в полиэтиленовые бутыли, предварительно промытые отбираемой водой. Объем отбираемой пробы воды должен быть не менее 100 см 3 .

10.1.3. Отобранные природные воды фильтруют через плотный фильтр (синяя лента) и подкисляют хлористоводородной кислотой квалификации ос.ч. до рН ≈ 2 - 3, добавляя 1 см 3 концентрированной кислоты на объем пробы 1 дм 3 . Фильтрование природных вод, содержащих небольшое количество мелкодисперсных взвешенных веществ, возможно проводить с использованием мембранных фильтров со средним диаметром пор 0,5 мкм под небольшим вакуумом. Сточные воды фильтруют через плотный фильтр (синяя лента) и измеряют значение рН пробы. Затем с помощью хлористоводородной кислоты или гидроксида натрия устанавливают рН пробы 2 - 3. Пробы выдерживают не менее 3 - 4-х часов перед выполнением измерений. Пробы, законсервированные таким образом, хранят в холодильнике при 4 - 6 °С не более 2-х недель. Незаконсервированные пробы анализируют в день отбора.

10.1.4. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

Цель анализа, предполагаемые загрязнители;

Место, время отбора;

Номер пробы;

Должность, фамилия, отбирающего пробу, дата

10.2. Подготовка электрохимической ячейки к выполнению измерений.

Стеклянный стакан (электролизер) после проведения анализа обрабатывают концентрированной серной кислотой и промывают бидистиллированной водой. Электроды (индикаторный, вспомогательный, сравнения) промывают бидистиллированной водой. Затем электролизер и электроды (вспомогательный и сравнения) выдерживают в растворе хлористоводородной кислоты концентрации 0,1 моль/дм 3 в течение 1 - 2-х минут и вновь промывают бидистиллированной водой.

10.3. Приготовление растворов, необходимых для выполнения измерений.

10.3.1. Приготовление основных растворов (ОР) никеля (II) с массовой концентрацией ионов никеля (II) 0,1 мг/см 3 .

10.3.1.1. Приготовление основного раствора никеля (II) из государственного стандартного образца состава ионов никеля (II) с аттестованной концентрацией элемента 1 мг/см 3 .

В мерную колбу вместимостью 50 см 3 вводят 5 см 3 стандартного образца состава никеля (1Г) и доводят объем раствора до метки бидистиллированной водой.

10.3.1.2. Приготовление основного раствора никеля (II) в отсутствии ГСО:

На аналитических весах взвешивают в химическом стакане 0,4049 г хлористого никеля и растворяют в бидистиллированной воде, содержащей 20 см 3 концентрированной хлористоводородной кислоты. Раствор количественно переносят в мерную колбу вместимостью 1 дм 3 . Объем раствора доводят до метки на колбе бидистиллированной водой.

Основные растворы устойчивы в течение 6 месяцев.

10.3.2. Приготовление аттестованных растворов никеля (II). Аттестованные растворы (АР) с содержанием элемента по 10000, 1000 и 100 мкг/дм 3 готовят последовательным разбавлением в 10, 100 и 1000 раз основного раствора в мерных колбах вместимостью 25 см 3 в соответствии с табл. . Разбавление основных растворов никеля (II) проводят тридистиллированной водой.

Таблица 2.

На аналитических весах взвешивают 26,8 г хлористого аммония и переносят навеску в мерную колбу вместимостью 500 см 3 . Приливают 75 см 3 25 % раствора гидроксида аммония. Объем раствора доводят до метки на колбе тридистиллированной водой. Измеряют рН полученного раствора и доводят его кислотность до рН ≈ 9,8 ± 0,2.

10.4. Подготовка к работе и регенерация поверхности индикаторного электрода.

10.4.1. Подготовка поверхности индикаторного электрода.

Перед каждым погружением в раствор электрод:

Промывают тридистиллированной водой;

Осушают фильтровальной бумагой;

Тонкий слой рабочей поверхности электрода срезают резцом керамическим.

После регистрации каждой вольтамперограммы для регенерации поверхности электрод поляризуют катодными развертками потенциала (5 разверток) в интервале от (-0,75) В до 1,0 В.

10.5. Подготовка приборов к работе.

Подготовку к работе проводят в соответствии с инструкцией по эксплуатации и техническому описанию соответствующего прибора.

11. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ.

11.1. Пробы с низким (менее 50 мг/дм 3) содержанием органического углерода.

Проводят процесс предварительного концентрирования и регистрируют аналитический сигнал (АС) никеля для пробы (операцию повторяют 2 - 3 раза). Затем в электролизер с помощью дозатора или пипетки вносят добавку аттестованного раствора (АР) ионов никеля (II) в таком количестве, чтобы величина АС никеля увеличилась в 1,5 - 2 раза по сравнению с первоначальной. Объем добавки не должен превышать 0,25 см 3 . Регистрируют АС пробы с добавкой в тех же условиях, что и АС пробы (операцию повторяют 2 - 3 раза). Содержание Ni (II) в холостой (контрольной) пробе определяют для каждой новой партии используемых реактивов.

11.2. Пробы с содержанием органического углерода выше 50 мг/дм 3 .

К 10 см 3 пробы, подкисленной до рН 2 - 3 приливают 0,1 см 3 30 % раствора перекиси водорода и подвергают пробу ультрафиолетовому облучению для разрушения органических веществ при температуре 90 °С в течение 1 - 2 часов в соответствии с руководством по эксплуатации установки для обработки проб ультрафиолетовым облучением.

11.2.2. Анализ.

Анализ подготовленной по п. пробы проводят по п. или в зависимости от содержания Ni (II) в пробе.

Таблица 3

ВЫБОР АЛИКВОТНОЙ ЧАСТИ ПРОБЫ ДЛЯ АНАЛИЗА.

Поддиапазон измеряемых концентраций ионов никеля (II), мкг/дм 3

Степень разбавления пробы

Объем пробы, добавляемой в ячейку, см 3

Норматив оперативного контроля воспроизводимости, D, % (Р =0,95, M =2)

от 1,0 до 50,0 включ.

св. 50 до 500 включ.

св. 500 до 2500 включ.

13.2. Оперативный контроль погрешности.

Образцами для контроля являются реальные пробы питьевых, природных и сточных вод, взятые в традиционных точках контроля состава вод. Объем отобранной пробы для контроля должен соответствовать удвоенному объему, необходимому для проведения анализа по методике. Отобранный объем делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики и получают результат анализа исходной пробы - X, вторую разбавляют дистиллированной водой в два раза и снова делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы, разбавленной в два раза - X", а во вторую часть делают добавку определяемого компонента (С) и анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы, разбавленной в два раза, с добавкой - X". (Результаты анализа исходной рабочей пробы - X, рабочей пробы, разбавленной в два раза - X, и рабочей пробы, разбавленной в два раза с добавкой - X" следует получать в одинаковых условиях, т.е. их получает один аналитик с использованием одного набора мерной посуды, одной партии реактивов и т.д.). Решение об удовлетворительной погрешности принимают при выполнении условия:

где X - результат анализа рабочей пробы;

X" - результат анализа рабочей пробы, разбавленной в два раза;

X" - результат анализа рабочей пробы, разбавленной в два раза, с добавкой определяемого компонента;

С - величина добавки определяемого компонента;

К - норматив оперативного контроля погрешности.

Норматив оперативного контроля погрешности (допускаемое значение разности между результатом контрольного измерения реальной пробы, пробы, разбавленной в два раза, пробы, разбавленной в два раза с введенной добавкой и величиной добавки) для доверительной вероятности Р = 0,90 рассчитывают по формуле:

где ∆ сс - характеристика систематической составляющей погрешности, соответствующая содержанию компонента, равному величине добавки,

Мкг/дм 3 (С - содержание компонента в добавке);

Характеристика случайной составляющей погрешности, соответствующая содержанию компонента в разбавленной пробе с добавкой (разбавленной пробе, реальной пробе соответственно),

мкг/дм 3 (Х" - содержание компонента в разбавленной пробе с добавкой);

мкг/дм 3 (X" - содержание компонента в разбавленной пробе);

мкг/дм 3 (X - содержание компонента в реальной пробе).

Оперативный контроль погрешности обязательно проводят при смене партий реактивов и не реже одного раза в неделю.

При превышении норматива оперативного контроля погрешности эксперимент повторяют. При повторном превышении указанного норматива К выясняют причины, приводящие к неудовлетворительным результатам контроля и устраняют их.

13.3. Форма представления результатов анализа.

Результат количественного анализа в документах, предусматривающих его использование, представляют в виде:

результат анализа (X, мкг/дм 3), характеристика погрешности

×

Помимо химического анализа воды мы рекомендуем сделать микробиологическое исследование воды в партнерской лаборатории биологического факультета МГУ (без аккредитации).
Понятно, что несоответствие воды микробиологическим нормам, так же, как и химическим, делает ее непригодной для питья. Своевременный микробиологический анализ позволит предотвратить заражение кишечными инфекциями, передающимися водным путем, и в случае индивидуальных скважин разработать меры по очистке воды.
Микробиологический анализ воды в МГУ включает определение общего микробного числа (ОМЧ), количества общих колиформных и колиформных термотолерантных бактерий.
Общее микробное число - количество микроорганизмов в единице объема исследуемого объекта. ОМЧ позволяет получить представление о массивности бактериального загрязнения воды. Чем выше ОМЧ, тем больше вероятность попадания в объект патогенных микроорганизмов.
Колиформные организмы (общие колиформы) являются удобными микробными индикаторами качества питьевой воды. Согласно рекомендациям СанПиН, колиформные бактерии не должны обнаруживаться в системах водоснабжения с подготовленной водой. Допускается случайное попадание колиформных организмов в распределительной системе, но не более чем в 5% проб, отобранных в течение любого 12 - месячного периода. Присутствие же колиформных организмов в воде свидетельствует о ее недостаточной очистке, вторичном загрязнении или о наличии в воде избыточного количества питательных веществ.
Среди колиформных микроорганизмов выделяют группу термотолерантных бактерий, которые ферментируют лактозу при 44°С в течение 24 ч. Эти бактерии являются показателями свежего фекального загрязнения.
Микробиологическое исследование выполняется только в дополнение к химическому анализу воды.

Имея собственную скважину на приусадебном участке, можно не переживать из-за стихийных отключений воды и экономить на оплате коммунальных услуг. Но есть и оборотная сторона медали. Если качество жидкости в центральном водопроводе еще более-менее соответствует гигиеническим нормам, то состав живительной влаги из колодца зачастую остается загадкой. Чтобы не играть со своим здоровьем в русскую рулетку, стоит периодически проводить количественный анализ воды из скважины. Нехитрая процедура позволит вам вовремя выявить посторонние «включения» и установить подходящие фильтры.

Химический состав питьевой воды

Нормы качества воды регламентирует «СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества». Согласно документу, вода для питья не должна нести угрозы по химическому и бактериологическому составу и обладать приятными органолептическими свойствами. Главными критериями считаются прозрачность, отсутствие привкуса и нейтральный запах.

Вот здесь и начинается самое интересное. Корректировка нормативов проводится в среднем раз в десятилетие, при этом пересмотру подвергается не только нормативная база, но и методики проведения анализов. К сожалению, данные по органолептическим показателям остаются неизменными в течение почти полувека. Как и несколько десятков лет назад, они определяются по субъективным ощущениям.

Реальную картину может предоставить только количественный химический анализ вод, проведенный в аттестованной лаборатории или СЭС. По данным ВОЗ, в повседневной жизни применяется около 70 тысяч видов химических веществ, около 20 процентов из них могут представлять потенциальную токсическую опасность. Чтобы достоверно определить показатели воды, необходимо сложное техническое оснащение и высокочувствительные реагенты.

Жесткая вода – самая распространенная проблема

Распространенные проблемы

Впрочем, не все так страшно. Несмотря на впечатляющее количество потенциальных угроз, в скважинах и колодцах встречается лишь малая часть вредоносных «добавок». Наиболее распространенной проблемой считается жесткая, то есть перенасыщенная минеральными компонентами, вода. Чрезмерная жесткость появляется в результате высокой концентрации солей магния и калия. Чем она грозит в быту? Нагревающие приборы быстро покрываются налетом накипи, что значительно снижает их ресурс. В жесткой воде плохо или совсем не пенятся моющие средства, что создает определенные проблемы при стирке и мытье посуды. Минеральные соли плохо влияют на чувствительную кожу – она пересыхает и начинает шелушиться.

Важно! Проблема жесткости воды решается установкой умягчающих фильтров, самый эффективный из которых – система обратного осмоса.

Количественный анализ воды

Количественный анализ воды разделяется на несколько видов:

  • Сокращенный анализ;
  • Полный химический анализ;
  • Анализ отдельных показателей.

В большинстве случаев достаточно лайт-версии. Если результаты подобной проверки выявили отклонения от нормы, то проводится полный анализ с упором на отдельные элементы.

На сегодняшний день наиболее информативным является количественный химический анализ вод. Для глубоких источников (от 25 метров) достаточно изучения состава воды по 14 пунктам. Жидкость из колодцев чаще подвергается загрязнению неорганическими соединениями, поэтому ее исследуют по 25 параметрам.

Важно! Перед вводом в эксплуатацию нового источника всегда проводится расширенный анализ.

Исследование состава воды затрагивает следующие показатели:

  • Жесткость;
  • Щелочность;
  • Содержание железа;
  • Окисляемость;
  • Наличие и процентное содержание химических примесей.

Стоимость количественного анализа воды колеблется в пределах 50-75 долларов (зависит от лаборатории).

Как взять воду на химический анализ

Достоверность результатов зависит не только от уровня лаборатории, но и от правильности забора воды из скважины. Чтобы в жидкость не попали сторонние примеси, соблюдайте определенные правила:

  • Используйте стерильную емкость. Стеклянную тару нужно прокипятить, пластиковую – обдать кипятком.
  • Минимальный показательный объем – 1 литр, но лучше набирать не менее 1,5-2 литров.
  • Нельзя брать пластиковые бутылки из-под газированных напитков – красители, входящие в состав лимонада, могут негативно повлиять на результаты анализа.

Важно! Пробы воды необходимо доставить в лабораторию в течение 24 часов.

Экспресс-полоски не дают стопроцентной точности

Экспресс-тесты

Как сделать количественный анализ воды в домашних условиях? В хозяйственных магазинах и аптеках можно приобрести экспресс-тесты – комплекты с полосками, пропитанными соответствующими реагентами. Как правило, в набор входит несколько тестов, определяющих самые распространенные загрязнения. Специалисты не рекомендуют полагаться на результаты подобных исследований, поскольку бытовые реагенты срабатывают только при очень высоком уровне содержания вредных веществ. Для периодического контроля или подбора фильтрующих систем домашние способы не подходят.

Важно! Приобретая экспресс-тесты, убедитесь, что они прошли государственную аттестацию и испытания в центрах Минприроды России. Продавец обязан предоставить вам соответствующие документы.

Пределы очистки воды

Количественный химический анализ вод служит основанием для подбора фильтров очистки. Но насколько чистой должна быть питьевая вода? Стоит ли избавляться от всех минеральных веществ, содержащихся в жидкости? Специалисты говорят твердое «нет», и тому есть ряд причин:

  • Химические элементы поддерживают кислотно-щелочной баланс нашего организма.
  • Фтор, содержащийся в воде, укрепляет зубную эмаль.
  • Микроэлементы и соли снижают риск развития сердечно-сосудистых заболеваний.

Для здоровья человека крайне важно очистить питьевую воду от излишков солей и минералов, но не сделать ее дистиллированной, то есть полностью избавленной от каких-либо запахов и примесей. Не стоит надеяться на результаты сомнительных тестов и приобретать супер-мощные системы фильтрации без проведения лабораторных анализов. Обращайтесь в сертифицированные центры и будьте здоровы!

Видео: химический анализ воды

    Приложение А (обязательное). Подготовка катионита (перевод в Подготовка катионита (перевод в Н+ - форму) и активированного угля) и активированного угля

Количественный химический анализ вод. Методика выполнения измерений массовых концентраций сульфатов в пробах природных и очищенных сточных вод титрованием солью бария в присутствии ортанилового К
ПНД Ф 14.1:2.107-97
(утв. Госкомэкологии РФ 21 марта 1997 г.)

1. Введение

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них массовой концентрации сульфатов в диапазоне от 50 до 300 титриметрическим методом без разбавления и концентрирования пробы.

Если массовая концентрация сульфатов в анализируемой пробе превышает верхнюю границу, допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация сульфатов соответствовала регламентированному диапазону.

Если массовая концентрация сульфатов в анализируемой пробе меньше 50 , следует применять другой метод определения.

Определению мешают окрашенные и взвешенные вещества, а также катионы, способные реагировать с ортаниловым К.

Устранение мешающих влияний осуществляется в соответствии с п. 10 .

2. Принцип метода

Титриметрический метод определения массовой концентрации сульфатов основан на способности сульфатов образовывать с ионами бария слаборастворимый осадок . В точке эквивалентности избыток ионов бария реагирует с индикатором ортаниловым К с образованием комплексного соединения. При этом окраска раствора изменяется из сине-фиолетовой в зеленовато-голубую.

3. Приписанные характеристики погрешности измерений и ее составляющих

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1 .

Значения показателя точности методики используют при:

Оформлении результатов анализа, выдаваемых лабораторией;

Оценке деятельности лабораторий на качество проведения испытаний;

Оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Таблица 1

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

Диапазон измерений массовой концентрации сульфатов,

Показатель точности (границы относительной погрешности при вероятности Р = 0.95),

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),

от 50.0 до 300.0 вкл.

4. Средства измерений, вспомогательные устройства, реактивы и материалы

4.1. Средства измерений

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием сульфатов с погрешностью не более 1% при Р = 0.95

Колбы мерные, наливные

Пипетки градуированные

Пипетки с одной меткой

Цилиндры мерные или мензурки

4.2. Вспомогательные устройства

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130°С

Стаканчики для взвешивания (бюксы)

Стаканы химические

Колбы конические

Колба с тубусом 1-500

Воронки лабораторные В-75-110 ХС

Воронка Бюхнера 1

или воронка фильтрующая с пористой пластинкой ВФ-1-32(40)-ПОР 100(160) ТХС

Эксикатор

Колонка хроматографическая диаметром 1,5-2,0 см и длиной 25-30 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

ТУ-3616-001-32953279-97

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерения и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2 .

4.3. Реактивы и материалы

Хлорид бария

Сульфат калия

Ортаниловый К, тринатриевая соль

ТУ 6-09-05-587

Соляная кислота

Гидроксид натрия

Спирт этиловый или

Катионит сильнокислотный КУ-2

Уголь активированный

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

ТУ 6-55-221-1029-89

или фильтры бумажные обеззоленные "синяя лента"

Фильтры бумажные обеззоленные "белая лента"

Вода дистиллированная

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5. Требования безопасности

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 .

6. Требования к квалификации операторов

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

7. Условия измерений

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха

атмосферное давление

(84-106) кПа;

относительная влажность

не более 80% при температуре 25°С;

частота переменного тока

напряжение в сети

8. Отбор и хранение проб

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 "Вода. Общие требования к отбору проб".

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором соляной кислоты, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные или полиэтиленовые емкости. Объем отбираемой пробы должен быть не менее 200 .

8.4. Пробы хранят при температуре 3-4°С. Рекомендуется выполнять определение в течение 7 дней после отбора.

Если в воде присутствуют заметные количества других соединений минеральной или органической серы, определение необходимо выполнить не позднее 1 суток после отбора проб.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

Цель анализа, предполагаемые загрязнители;

Место, время отбора;

Номер пробы;

Должность, фамилия отбирающего пробу, дата.

9. Подготовка к выполнению измерений

9.1. Приготовление растворов и реактивов

9.1.1. Раствор хлорида бария, 0,02 эквивалента.

1,22 г растворяют в 450 дистиллированной воды в мерной колбе вместимостью 500 , доводят до метки дистиллированной водой и перемешивают. Раствор хранят в плотно закрытой склянке не более 6 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора сульфата калия (п. 9.2) не реже 1 раза в месяц.

9.1.2. Стандартный раствор сульфата калия с концентрацией 0,0200 эквивалента.

0,4357 г , предварительно высушенного в течение 2 ч при 105-110°С, переносят в мерную колбу вместимостью 250 , доводят дистиллированной водой до метки и перемешивают. Хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 6 мес.

9.1.3. Раствор ортанилового К, 0,05%.

25 мг ортанилового К растворяют в 50 дистиллированной воды. Хранят в склянке из темного стекла не более 10 суток при комнатной температуре и не более 1 месяца в холодильнике.

9.1.4. Раствор соляной кислоты, 4 .

170 концентрированной соляной кислоты смешивают с 330 дистиллированной воды.

9.1.5. Раствор соляной кислоты, 1 .

К 250 раствора соляной кислоты 4 приливают 750 дистиллированной воды и перемешивают.

Растворы соляной кислоты устойчивы при хранении в плотно закрытой посуде в течение 1 года.

9.1.6. Раствор гидроксида натрия, 1 .

40 г NaOH растворяют в 1 дистиллированной воды. Хранят в плотно закрытой полиэтиленовой посуде.

9.1.7. Раствор гидроксида натрия, 0,4%.

2 г гидроксида натрия растворяют в 500 дистиллированной воды. Хранят в плотно закрытой полиэтиленовой посуде.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.2. Установление точной концентрации раствора хлорида бария

В коническую колбу вместимостью 100 вносят 4 см стандартного раствора сульфата калия (п. 9.1.2), добавляют 6 воды и доводят рН раствора до 4 раствором соляной кислоты. Добавляют 15 этилового спирта или ацетона, 0,3 раствора ортанилового К и титруют раствором хлорида бария при постоянном перемешивании до перехода окраски из сине-фиолетовой в зеленовато-голубую. Титрование проводят медленно, особенно вблизи точки эквивалентности, и продолжают до тех пор, пока фиолетовая окраска не будет возвращаться в течение 2-3 мин.

Повторяют титрование и при отсутствии расхождения в объемах титранта более 0,02 за результат титрования принимают среднее арифметическое.

Точную концентрацию раствора хлорида бария находят по формуле:

где - концентрация раствора хлорида бария, эквивалента;

Концентрация раствора сульфата калия, эквивалента;

Объем раствора сульфата калия, ;

Объем раствора хлорида бария, израсходованный на титрование раствора сульфата калия, .

10. Устранение мешающих влияний

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы.

Если проба воды заметно окрашена за счёт присутствия веществ природного или антропогенного происхождения, затрудняется фиксация конечной точки титрования. В этом случае пробу перед выполнением анализа следует пропустить со скоростью 4-6 через хроматографическую колонку, заполненную активированным углем (высота слоя 12-15 см). Первые 25-30 пробы, прошедшей через колонку, отбрасывают.

Если в пробе присутствует активный хлор, его удаляют нагреванием пробы. Для этого в мерную колбу вместимостью 100 помещают анализируемую воду до метки, затем переносят пробу из колбы в стакан вместимостью 250 и кипятят 10-15 мин. После охлаждения пробу возвращают в мерную колбу, стакан ополаскивают 1-2 дистиллированной воды и доводят объем пробы в колбе до метки.

Мешающее влияние катионов устраняют обработкой пробы катионитом.

11. Выполнение измерений

Непосредственно перед выполнением анализа отфильтровывают на воронке через неплотный бумажный фильтр 5-10 г катионита в , помещают его в коническую колбу вместимостью 250 и споласкивают 20-25 анализируемой воды.

Вносят в колбу с катионитом 50-70 анализируемой воды и выдерживают пробу в течение 10 мин, периодически встряхивая колбу. Затем дают катиониту осесть и отбирают пипеткой 10 воды в коническую колбу вместимостью 100 . Проверяют рН и, если необходимо, доводят его величину раствором гидроксида натрия 1 примерно до 4 по индикаторной бумаге. Добавляют 15 этилового спирта или ацетона, 0,3 раствора ортанилового К и титруют раствором хлорида бария при постоянном перемешивании содержимого колбы до перехода окраски из сине-фиолетовой в зеленовато-голубую.

В начальной стадии титрования, особенно в пробах с невысоким содержанием сульфатов, окраска изменяется уже после первых капель хлорида бария. Вследствие этого титрование следует проводить медленно, при энергичном перемешивании, продолжая его до тех пор, пока сине-фиолетовая окраска не будет возвращаться в течение 2-3 мин.

Повторяют титрование и, если расхождение между параллельными титрованиями не превышает 0,04 , за результат принимают среднее значение объёма раствора хлорида бария. В противном случае повторяют титрование до получения допустимого расхождения результатов.

12. Обработка результатов измерений

12.1. Массовую концентрацию сульфатов в анализируемой пробе воды находят по формуле:

где Х - массовая концентрация сульфатов в воде, ;

V - объем раствора хлорида бария, израсходованного на титрование пробы, ;

Концентрация раствора хлорида бария, эквивалента;

Поправка, равная 5,0 в диапазоне массовых концентраций сульфатов 50-100 ; при концентрациях выше 100

Объем пробы воды, взятый для титрования после катионирования, .

48,03 - молярная масса эквивалента , г/моль.

Если массовая концентрация сульфатов в анализируемой пробе превышает верхнюю границу диапазона (300 ), отбирают аликвоту катионированной пробы, разбавляют ее дистиллированной водой с таким расчетом, чтобы массовая концентрация сульфатов входила в регламентированный диапазон, отбирают 10 и выполняют титрование в соответствии с п. 11 .

В этом случае массовую концентрацию сульфатов в анализируемой пробе воды Х находят по формуле:

где - массовая концентрация сульфатов в разбавленной пробе воды, ;

v - объем аликвоты пробы воды, взятой для разбавления, ;

Объем пробы воды после разбавления, .

12.2. За результат анализа принимают среднее арифметическое значение двух параллельных определений и :

для которых выполняется следующее условие:

где r - предел повторяемости при Р = 0.95.

Значение r при Р = 0.95 для всего регламентированного диапазона массовых концентраций сульфатов составляет 14%.

Если проводилось разбавление пробы воды из-за превышения массовой концентрации сульфатов верхней границы диапазона, значение выбирают из таблицы 1 для массовой концентрации сульфатов в разбавленной пробе воды .

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде:

при условии ,

где - результат анализа, полученный в соответствии с прописью методики;

Значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

Количество результатов параллельных определений, использованных для расчета результата анализа;

Способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

14. Контроль качества результатов анализа при реализации методики в лаборатории

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

Оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

Контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

14.1. Алгоритм оперативного контроля процедуры анализа с использованием метода добавок

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры с нормативом контроля К.

Результат контрольной процедуры рассчитывают по формуле:

где - результат анализа массовой концентрации сульфатов в пробе с известной добавкой - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 12.2 ;

Результат анализа массовой концентрации сульфатов в исходной пробе - среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 12.2 ;

Величина добавки.

где , - значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие массовой концентрации сульфатов в пробе с известной добавкой и в исходной пробе соответственно.

С - аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле:

где - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.

Лучшие статьи по теме