Автомобильный портал - Фаворит

Аксиальные двигатели внутреннего сгорания У.Г. Макомбера (США)

Аксиальный ДВС Duke Engine

Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал.


Классический ДВС

Если мы хотим сделать двигатель помощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров — что, естественно, также увеличивает результирующий объём двигателя.


С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.

В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС . Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней.

У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710×480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша».


Гениальный и слегка безумный инженер, изобретатель, конструктор и бизнесмен Джон Захария Делореан мечтал построить новую автомобильную империю в пику существующим, и сделать совершенно уникальный «автомобиль мечты». Все мы знаем машину DMC-12, которую называют просто DeLorean. Она не только стала звездой экрана в фильме «Назад в будущее», но и отличалась уникальными решениями во всём — начиная от алюминиевого кузова на плексигласовом каркасе и заканчивая дверями «крылья чайки». К сожалению, на фоне экономического кризиса производство машины не оправдало себя. А затем Делореан долго судился по подложному делу о наркотиках.

Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором — среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним — каждый из концов поршня должен был работать в своём цилиндре.


Чертёж из тетради Делореана

По каким-то причинам рождение двигателя не состоялось — возможно, потому, что разработка автомобиля с нуля вышло достаточно сложным предприятием. На DMC-12 устанавливали 2,8-литровый двигатель V6 совместной разработки Peugeot, Renault и Volvo мощностью 130 л. с. Пытливый читатель может изучить сканы чертежей и заметок Делореана на этой странице .


Экзотический вариант аксиального двигателя - «двигатель Требента»

Тем не менее, такие двигатели не получили широкого распространения — в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах — благодаря тому, как хорошо они вписываются в цилиндр.




Вариант под названием "Цилиндрический энергетический модуль " с двусторонними поршнями. Перпендикулярные штоки в поршнях описывают синусоиду, двигаясь по волнистой поверхности

Главная отличительная черта аксиального ДВС — компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.

Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и — ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях.

Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов — движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов.


Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше.

Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие — к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя — в зависимости от ваших целей).

Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому. это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.


Демострация малых вибраций двигателя Duke

Изобретение может быть использовано в двигателестроении. Двигатель внутреннего сгорания включает в себя, по меньшей мере, один модуль цилиндра. Модуль содержит вал, имеющий первый кулачок с несколькими рабочими выступами, аксиально установленный на валу, второй соседний кулачок с несколькими рабочими выступами и дифференциальную зубчатую передачу к первому кулачку с несколькими рабочими выступами для вращения вокруг оси в обратном направлении вокруг вала. Цилиндры каждой пары расположены диаметрально противоположно по отношению к валу с кулачками. Поршни в паре цилиндров жестко взаимосвязаны. Кулачки с несколькими рабочими выступами содержат 3+n рабочих выступов, где n является нулем или целым четным числом. Возвратно-поступательное движение поршней в цилиндрах сообщает вращательное движение валу через связь между поршнями и поверхностями кулачков с несколькими рабочими выступами. Технический результат заключается в улучшении крутящего момента и характеристик управления циклом двигателя. 13 з.п. ф-лы, 8 ил.

Изобретение относится к двигателям внутреннего сгорания. В частности, изобретение относится к двигателям внутреннего сгорания с улучшенным управлением различными циклами в процессе эксплуатации двигателя. Изобретение также относится к двигателям внутреннего сгорания с более высокими характеристиками крутящего момента. Двигатели внутреннего сгорания, которые используются в автомобилях, как правило, являются двигателями возвратно-поступательного типа, в которых поршень, колеблющийся в цилиндре, приводит в движение коленчатый вал через шатун. Имеются многочисленные недостатки в традиционной конструкции поршневого двигателя с кривошипно-шатунным механизмом, недостатки в основном связаны с возвратно-поступательным движением поршня и шатуна. Были разработаны многочисленные конструкции двигателя с целью преодоления ограничений и недостатков традиционных двигателей внутреннего сгорания с кривошипно-шатунным механизмом. Данные разработки включают в себя роторные двигатели, такие как двигатель Ванкеля, и двигатели, в которых кулачок или кулачки используются вместо, по крайней мере, коленчатого вала и в некоторых случаях также шатуна. Двигатели внутреннего сгорания, в которых кулачок или кулачки заменяют коленчатый вал, описаны, например, в заявке N 17897/76 на австралийский патент. Однако в то время как достижения в двигателе данного типа дали возможность преодолеть некоторые недостатки традиционных поршневых двигателей с кривошипно-шатунным механизмом, двигатели, использующие кулачок или кулачки вместо коленчатого вала, не эксплуатируются в полном масштабе. Известны также случаи использования двигателей внутреннего сгорания, имеющих противоположно движущиеся взаимосвязанные поршни. Описание такого устройства приводится в заявке N 36206/84 на австралийский патент. Однако ни в этом раскрытии предмета изобретения, ни в подобных документах нет предложения о возможности использования концепции противоположно движущихся взаимосвязанных поршней совместно с чем-то другим, нежели коленчатым валом. Задача изобретения заключается в создании двигателя внутреннего сгорания кулачкового роторного типа, который может иметь улучшенный крутящий момент и более высокие характеристики управления циклами двигателя. Задачей изобретения является также создание двигателя внутреннего сгорания, который дает возможность преодолеть, по меньшей мере некоторые недостатки существующих двигателей внутреннего сгорания. В широком смысле изобретение предлагает двигатель внутреннего сгорания, включающий в себя, по меньшей мере, один модуль цилиндра, указанный модуль цилиндра содержит: - вал, имеющий первый кулачок с несколькими рабочими выступами, аксиально установленный на валу, и второй соседний кулачок с несколькими рабочими выступами и дифференциальной зубчатой передачей к первому кулачку с несколькими рабочими выступами для вращения вокруг оси в обратном направлении вокруг вала; - по меньшей мере, одну пару цилиндров, цилиндры каждой пары расположены диаметрально противоположно по отношению к валу с кулачками с несколькими рабочими выступами, которые вставлены между ними; - поршень в каждом цилиндре, поршни в паре цилиндров жестко взаимосвязаны; в котором кулачки с несколькими рабочими выступами содержат 3+n рабочих выступов, где n является нулем или целым четным числом; и в котором возвратно-поступательное движение поршней в цилиндрах сообщает вращательное движение валу через связь между поршнями и поверхностями кулачков с несколькими рабочими выступами. Двигатель может содержать от 2 до 6 модулей цилиндра и по две пары цилиндров на каждый модуль цилиндра. Пары цилиндров могут быть расположены под углом 90 o друг к другу. Преимущественно каждый кулачок имеет три рабочих выступа, и каждый выступ является асимметричным. Жесткая взаимосвязь поршней включает в себя четыре шатуна, проходящие между парой поршней с шатунами, находящимися на одинаковом расстоянии друг от друга по периферии поршня, причем для шатунов предусмотрены направляющие втулки. Дифференциальная зубчатая передача может быть установлена внутри двигателя совместно с кулачками, вращающимися в обратном направлении, или с наружной стороны двигателя. Двигатель может быть двухтактным двигателем. Кроме того, связь между поршнями и поверхностями кулачков с несколькими рабочими выступами осуществляется через роликовые подшипники, которые могут иметь общую ось, или их оси могут быть смещены по отношению друг к другу и оси поршня. Из вышесказанного следует, что коленчатый вал и шатуны традиционного двигателя внутреннего сгорания заменены линейным валом и кулачками с несколькими рабочими выступами в двигателе в соответствии с изобретением. Использование кулачка вместо устройства шатуна/коленчатого вала обеспечивает возможность более эффективного контроля за позиционированием поршня в процессе работы двигателя. Например, период нахождения поршня в верхней мертвой точке (TDC) может быть продлен. Далее из подробного описания изобретения следует, что несмотря на наличие двух цилиндров, по меньшей мере, в одной паре цилиндров, в действительности создано устройство цилиндр-поршень двойного действия при помощи противоположно расположенных цилиндров с взаимосвязанными поршнями. Жесткая взаимосвязь поршней также устраняет перекашивающее кручение и сводит до минимума контакт между стенкой цилиндра и поршнем, таким образом, уменьшая трение. Использование двух кулачков, вращающихся в противоположном направлении, дает возможность достичь более высокого крутящего момента, чем при использовании традиционных двигателей внутреннего сгорания. Это объясняется тем, что как только поршень начинает рабочий такт, он имеет максимальное механическое преимущество по отношению к рабочему выступу кулачка. Обратимся теперь к более конкретным деталям двигателей внутреннего сгорания в соответствии с изобретением, такие двигатели, как указано выше, включают в себя, по меньшей мере, один модуль цилиндра. Двигатель с одним модулем цилиндра является предпочтительнее, хотя двигатели могут иметь от двух до шести модулей. В двигателях с несколькими модулями одиночный вал проходит через все модули или как единый элемент, или как взаимосвязанные части вала. Аналогично, блоки цилиндра двигателей с несколькими модулями могут быть выполнены как одно целое друг с другом или отдельно. Модуль цилиндра обычно имеет одну пару цилиндров. Однако двигатели в соответствии с изобретением могут также иметь две пары цилиндров на один модуль. В модулях цилиндров, имеющих две пары цилиндров, пары, как правило, расположены под углом 90 o друг к другу. Что касается кулачков с несколькими рабочими выступами в двигателях в соответствии с изобретением, то предпочтение отдается кулачку с тремя рабочими выступами. Это обеспечивает возможность шести циклов зажигания на один оборот кулачка в двухтактном двигателе. Однако двигатели могут также иметь кулачки с пятью, семью, девятью или большим количеством рабочих выступов. Рабочий выступ кулачка может быть асимметричным для регулирования скорости поршня на определенной стадии цикла, например, для увеличения продолжительности нахождения поршня в верхней мертвой точке (TDC) или в нижней мертвой точке (BDC). По оценке специалистов в данной области техники увеличение продолжительности нахождения в верхней мертвой точке (TDC) улучшает сгорание, в то время как увеличение продолжительности нахождения в нижней мертвой точке (BDC) способствует улучшению продувки. Регулирование скорости поршня при помощи рабочего профиля дает возможность регулировать также ускорение поршня и приложение крутящего момента. В частности, это дает возможность получить более значительный крутящий момент сразу же после верхней мертвой точки, чем в традиционном поршневом двигателе с кривошипно-шатунным механизмом. Другие конструктивные особенности, обеспечиваемые переменной скоростью поршня, включают в себя регулирование скорости открывания отверстия по сравнению со скоростью закрытия и регулированием скорости сжатия по отношению к скорости сгорания. Первый кулачок с несколькими рабочими выступами может устанавливаться на вал любым способом, известным в данной области техники. Альтернативно, вал и первый кулачок с несколькими рабочими выступами могут изготавливаться как единый элемент. Дифференциальная зубчатая передача, которая обеспечивает возможность вращения в обратном направлении первого и второго кулачков с несколькими рабочими выступами, также синхронизирует вращение кулачков в обратном направлении. Способ дифференциальной зубчатой передачи кулачков может быть любым способом, известным в данной области техники. Например, конические зубчатые колеса могут устанавливаться на противоположных поверхностях первого и второго кулачков с несколькими рабочими выступами с, по меньшей мере, одним зубчатым колесом между ними. Предпочтительно, устанавливаются два диаметрально противоположных зубчатых колеса. Поддерживающий элемент, в котором свободно вращается вал, предусмотрен для поддерживающих зубчатых колес, что дает определенные преимущества. Жесткая взаимосвязь поршней, как правило, включает в себя по меньшей мере два шатуна, которые устанавливаются между ними и крепятся к нижней поверхности поршней, смежных с периферией. Предпочтительно используются четыре шатуна, расположенные на одинаковом расстоянии друг от друга по периферии поршня. В модуле цилиндра предусмотрены направляющие втулки для шатунов, взаимосвязывающих поршни. Направляющие втулки обычно имеют конфигурацию, которая обеспечивает возможность бокового движения шатунов при расширении и сжатии поршня. Соприкосновение между поршнями и поверхностями кулачков способствует уменьшению вибрации и потерь в результате трения. С нижней стороны поршня имеется роликовый подшипник для соприкосновения с каждой поверхностью кулачка. Следует отметить, что взаимосвязь поршней, включающих в себя пару противоположно движущихся поршней, обеспечивает возможность регулирования зазора между площадью контакта поршня (будь то роликовый подшипник, каретка или тому подобное) и поверхностью кулачка. Более того, такой способ контакта не требует канавок или того подобного в боковых поверхностях кулачков с целью получения традиционного шатуна, как в случае с некоторыми двигателями аналогичной конструкции. Данная характеристика двигателей аналогичной конструкции при превышении скорости приводит к износу и чрезмерному шуму, данные недостатки в значительной степени устраняются в настоящем изобретении. Двигатели, согласно изобретению, могут быть двухтактными или четырехтактными. В первом случае, смесь топлива обычно подается с наддувом. Однако любой вид подачи топлива и воздуха могут использоваться совместно в четырехтактном двигателе. Модули цилиндров в соответствии с изобретением могут также служить воздушными или газовыми компрессорами. Другие аспекты двигателей согласно изобретению соответствуют тому, что обычно известно в данной области техники. Однако следует отметить, что требуется только подача масла под очень низким давлением на дифференциальную зубчатую передачу кулачков с несколькими рабочими выступами, уменьшая таким образом, потери мощности при помощи масляного насоса. Более того, другие элементы двигателя, включая поршни, могут получать масло путем разбрызгивания. В этом отношении следует отметить, что разбрызгивание масла на поршни при помощи центробежной силы служит также для охлаждения поршней. Преимущества двигателей в соответствии с изобретением включают в себя следующее: - двигатель имеет компактную конструкцию с небольшим количеством движущихся деталей; - двигатели могут работать в любом направлении при применении кулачков с несколькими симметричными рабочими выступами; - двигатели являются более легкими, чем традиционные поршневые двигатели с кривошипно-шатунным механизмом; - двигатели более легко изготавливаются и собираются, чем традиционные двигатели;
- более продолжительный перерыв в работе поршня, который становится возможным благодаря конструкции двигателя, обеспечивает возможность использования более низкой, чем обычная, степени сжатия;
- устранены детали с возвратно-поступательным движением, такие как шатуны вала поршня-кривошипа. Другими преимуществами двигателей в соответствии с изобретением благодаря применению кулачков с несколькими рабочими выступами являются следующие: кулачки могут более легко изготавливаться, чем коленчатые валы; кулачки не требуют дополнительных противовесов; и кулачки удваивают действие как маховик, таким образом, обеспечивая большее количество движения. Рассмотрев изобретение в широком смысле, приведем теперь конкретные примеры осуществления изобретения со ссылкой на прилагаемые чертежи, кратко описанные ниже. Фиг. 1. Поперечное сечение двухтактного двигателя, включающего в себя один модуль цилиндра с поперечным сечением по оси цилиндров и поперечным сечением по отношению к валу двигателя. Фиг. 2. Часть поперечного сечения по линии A-A фиг. 1. Фиг. 3. Часть поперечного сечения по линии B-B фиг. 1, показывающая деталь нижней части поршня. Фиг. 4. График, показывающий положение конкретной точки на поршне при пересечении одного асимметричного рабочего выступа кулачка. Фиг. 5. Часть поперечного сечения другого двухтактного двигателя, включающего в себя один модуль цилиндра с поперечным сечением в плоскости центрального вала двигателя. Фиг. 6. Вид с торца одного из блоков шестерен двигателя, показанного на фиг. 5. Фиг. 7. Схематический вид части двигателя, показывающий поршень в соприкосновении с кулачками с тремя рабочими выступами, которые вращаются в обратном направлении. Фиг. 8. Деталь поршня, имеющего подшипники, соприкасающиеся со смещенным кулачком. Одинаковые позиции на фигурах пронумерованы одинаково. На фиг. 1 показан двухтактный двигатель 1, включающий в себя один модуль цилиндра, который имеет одну пару цилиндров, состоящую из цилиндров 2 и 3. Цилиндры 2 и 3 имеют поршни 4 и 5, которые взаимосвязаны четырьмя шатунами, два из которых видны в позициях 6a и 6b. Двигатель 1 также включает в себя центральный вал 7, с которым связаны кулачки с тремя рабочими выступами. Кулачок 9 фактически совпадает с кулачком 8, как показано на фигуре, ввиду того, что поршни находятся в верхней мертвой точке или в нижней мертвой точке. Поршни 4 и 5 соприкасаются с кулачками 8 и 9 через роликовые подшипники, положение которых, в общем, указывается в позициях 10 и 11. Другие конструктивные особенности двигателя 1 включают в себя водяную рубашку 12, свечи зажигания 13 и 14, маслоотстойник 15, датчик 16 масляного насоса и уравновешивающие валы 17 и 18. Расположение впускных отверстий указано позициями 19 и 20, которое также соответствует положению выхлопных отверстий. На фиг. 2 более детально показаны кулачки 8 и 9 вместе с валом 7 и дифференциальной зубчатой передачей, которые будут вкратце описаны. Поперечное сечение, показанное на фиг. 2, повернуто на 90 o по отношению к фиг. 1 и рабочие выступы кулачка находятся в немного другом положении по сравнению с положениями, показанными на фиг. 1. Дифференциальная или синхронизирующая зубчатая передача включает в себя коническое зубчатое колесо 21 на первом кулачке 8, коническое зубчатое колесо 22 на втором кулачке 9 и ведущие шестерни 23 и 24. Ведущие шестерни 23 и 24 поддерживаются зубчатой опорой 25, которая прикреплена к корпусу 26 вала. Корпус 26 вала, предпочтительно, является частью модуля цилиндра. На фиг. 2 показан также маховик 27, шкив 28 и подшипники 29-35. Первый кулачок 8 в основном изготовлен за одно целое с валом 7. Второй кулачок 9 может вращаться в обратном направлении по отношению к кулачку 8, но регулируется по времени к вращению кулачка 8 дифференциальной зубчатой передачей. На фиг. 3 показана нижняя сторона поршня 5, показанного на фиг. 1 для того, чтобы представить деталь роликовых подшипников. На фиг. 3 показан поршень 5 и вал 36, проходящий между бобышками 37 и 38. Роликовые подшипники 39 и 40 установлены на валу 36, которые соответствуют роликовым подшипникам, как указано цифрами 10 и 11 на фиг. 1. Взаимосоединенные шатуны могут быть видны в поперечном сечении на фиг. 3, один из них указан позицией 6а. Показаны муфты, через которые проходят взаимосоединенные шатуны, одна из которых указана цифрой 41. Несмотря на то, что фиг. 3 выполнена в более крупном масштабе, чем фиг. 2, из нее следует, что роликовые подшипники 39 и 40 могут соприкасаться с поверхностями 42 и 43 кулачков 8 и 9 (фиг. 2) в процессе эксплуатации двигателя. Работа двигателя 1 может быть оценена по фиг. 1. Движение поршня 4 и 5 слева направо при рабочем такте в цилиндре 2 вызывает вращение кулачков 8 и 9 через их контакт с роликовым подшипником 10. В результате происходит эффект работы "ножниц". Вращение кулачка 8 оказывает воздействие на вращение вала 7, в то время как обратное вращение кулачка 9 также способствует вращению кулачка 7 при помощи дифференциальной зубчатой передачи (см. фиг. 2). Благодаря действию "ножниц" достигается более значительный крутящий момент при рабочем такте, чем в традиционном двигателе. Действительно, соотношение диаметра поршня/длины хода поршня, показанное на фиг. 1, может стремиться к значительно большей площади конфигурации с сохранением адекватного крутящего момента. Еще одной конструктивной особенностью двигателей в соответствии с изобретением, показанным на фиг. 1, является то, что эквивалент картера двигателя герметизирован по отношению к цилиндрам в отличие от традиционных двухтактных двигателей. Это дает возможность использовать топливо без масла, таким образом, уменьшая компоненты, выделяемые двигателем в воздух. Регулирование скорости поршня и продолжительность нахождения в верхней мертвой точке (TDC) и нижней мертвой точке (BDC) при использовании рабочего выступа асимметричного кулачка показаны на фиг. 4. Фиг. 4 - это график конкретной точки на поршне при его колебании между средней точкой 45, верхней мертвой точкой (TDC) 46 и нижней мертвой точкой (BDC) 47. Благодаря рабочему выступу асимметричного кулачка скорость поршня может регулироваться. Во-первых, поршень находится в верхней мертвой точке 46 в течение более продолжительного периода времени. Быстрое ускорение поршня в позиции 48 обеспечивает возможность более высокого крутящего момента при такте сгорания, в то время как более низкая скорость поршня в позиции 49 в конце такта сгорания обеспечивает возможность более эффективного регулирования отверстия. С другой стороны, более высокая скорость поршня в начале такта 50 сжатия обеспечивает возможность более быстрого закрытия для повышения экономии топлива, в то время как низкая скорость поршня в конце 51 данного такта обеспечивает более высокие механические преимущества. На фиг. 5 показан другой двухтактный двигатель, имеющий одноцилиндровый модуль. Двигатель показан в частичном поперечном сечении. В действительности половина блока двигателя удалена для того, чтобы показать внутреннюю деталь двигателя. Поперечное сечение представляет собой плоскость, совпадающую с осью центрального вала двигателя (см. ниже). Таким образом, блок двигателя разделен по средней линии. Однако некоторые компоненты двигателя также показаны в поперечном сечении, такие как поршни 62 и 63, несущие бобышки 66 и 70, кулачки с тремя рабочими выступами 60 и 61 и втулка 83, связанная с кулачком 61. Все эти позиции будут рассмотрены ниже. Двигатель 52 (фиг. 5) включает в себя блок 53, головки 54 и 55 цилиндров и цилиндры 56 и 57. Свеча зажигания включена в головку каждого цилиндра, но для ясности на чертеже не показана. Вал 58 может вращаться в блоке 53 и поддерживается роликовыми подшипниками, один из которых указан позиций 59. Вал 58 имеет первый кулачок 60 с тремя рабочими выступами, прикрепленными к нему, кулачок расположен рядом с кулачком 61 с тремя рабочими выступами, который вращается в обратном направлении. Двигатель 52 включает в себя пару жестко взаимосвязанных поршней 62 в цилиндре 56 и 63 в цилиндре 57. Поршни 62 и 63 связаны четырьмя шатунами, два из которых указаны в позициях 64 и 65. (Шатуны 64 и 65 находятся в другой плоскости по отношению к остальной части поперечного сечения чертежа. Аналогичным образом, точки соприкосновения шатунов и поршней 62 и 63 не находятся в одной и той же плоскости остальной части поперечного сечения. Соотношение между шатунами и поршнями, по существу, такое же, как для двигателя, показанного на фиг. 1-3). Перемычка 53а проходит внутри блока 53 и включает в себя отверстия, через которые проходят шатуны. Данная перемычка сдерживает шатуны и, следовательно, поршни на одной прямой с осью модуля цилиндра. Роликовые подшипники вставлены между нижними сторонами поршней и поверхностями кулачков с тремя рабочими выступами. Что касается поршня 62, то на нижней стороне поршня установлена несущая бобышка 66, которая удерживает вал 67 для роликовых подшипников 68 и 69. Подшипник 68 соприкасается с кулачком 60, в то время как подшипник 69 соприкасается с кулачком 61. Предпочтительно, поршень 63 включает в себя идентичную несущую бобышку 70 с валом и подшипниками. Следует также отметить с учетом несущей бобышки 70, что перемычка 53b имеет соответствующее отверстие для обеспечения возможности прохождения несущей бобышки. Перемычка 53а имеет аналогичное отверстие, но часть перемычки, показанная на чертеже, находится в той же плоскости, что и шатуны 64 и 65. Вращение в обратном направлении кулачка 61 по отношению к кулачку 60 осуществляется дифференциальной зубчатой передачей 71, установленной с наружной стороны блока цилиндров. Корпус 72 предусмотрен для удерживания и покрытия компонентов зубчатой передачи. На фиг. 5 корпус 72 представлен в поперечном сечении, в то время как зубчатая передача 71 и вал 58 показаны не в поперечном сечении. Зубчатая передача 71 включает в себя солнечную шестерню 73 на валу 58. Солнечная шестерня 73 соприкасается с ведущими шестернями 74 и 75, которые, в свою очередь, соприкасаются с планетарными шестернями 76 и 77. Планетарные шестерни 76 и 77 соединены через валы 78 и 79 со вторым комплектом планетарных шестерен 80 и 81, которые установлены с солнечной шестерней 73 на втулке 83. Втулка 83 является коаксиальной по отношению к валу 58 и отдаленный от центра конец втулки прикреплен к кулачку 61. Ведущие шестерни 74 и 75 установлены на валы 84 и 85, валы поддерживаются подшипниками в корпусе 72. Часть зубчатой передачи 71 показана на фиг. 6. Фиг. 6 - это вид с торца вала 58, если смотреть снизу фиг. 5. На фиг. 6 солнечная шестерня 73 видна около вала 57. Ведущая шестерня 74 показана в соприкосновении с планетарной шестерней 76 на валу 78. На фигуре показана также вторая планетарная шестерня 76 на валу 78. На фигуре показана также вторая планетарная шестерня 80 в контакте с солнечной шестерней 32 на втулке 83. Из фиг. 6 следует, что вращение по часовой стрелке, например, вала 58 и солнечной шестерни 73 оказывает динамическое воздействие на вращение против часовой стрелки - по часовой стрелке солнечной шестерни 82 и втулки 83 через ведущую шестерню 74 и планетарные шестерни 76 и 80. Следовательно, кулачки 60 и 61 могут вращаться в обратном направлении. Другие конструктивные особенности двигателя, показанные на фиг. 5, и принцип работы двигателя являются такими же, как у двигателя, показанного на фиг. 1 и 2. В частности, направленное вниз тяговое усилие поршня придает кулачкам действие, подобное ножницам, что может привести к обратному вращению с помощью дифференциальной зубчатой передачи. Следует подчеркнуть, что в то время как в двигателе, показанном на фиг. 5, используются обыкновенные шестерни в дифференциальной зубчатой передаче может также применяться коническая зубчатая передача. Аналогичным образом, обыкновенные шестерни могут использоваться в дифференциальной зубчатой передаче, показанной на фиг. 1 и 2, двигателя. В двигателях, которые приводятся в качестве примеров на фиг. 1-3 и 5, совмещены оси роликовых подшипников, которые соприкасаются с поверхностями кулачков с тремя рабочими выступами. Для дальнейшего улучшения характеристик крутящего момента оси роликовых подшипников могут быть смещены. Двигатель со смещенным кулачком, который соприкасается с подшипниками, схематически показан на фиг. 7. На данной фигуре, которая является видом по центральному валу двигателя, показаны кулачок 86, кулачок 87, вращающийся в обратном направлении, и поршень 88. Поршень 88 включает в себя несущие бобышки 89 и 90, которые несут роликовые подшипники 91 и 92, подшипники показаны в контакте с рабочими выступами 93 и 99 соответственно кулачков с тремя рабочими выступами 86 и 87. Из фиг. 7 следует, что оси 95 и 96 подшипников 91 и 92 смещены по отношению друг к другу и по отношению оси поршня. При расположении подшипников на определенном расстоянии от оси поршня увеличивается крутящий момент при помощи увеличения механического преимущества. Деталь другого поршня со смещенными подшипниками на нижней стороне поршня приводится на фиг. 8. Поршень 97 показан с подшипниками 98 и 99, помещенными в корпуса 100 и 101 на нижней стороне поршня. Отсюда следует, что оси 102 и 103 подшипников 98 и 99 смещены, но не в такой степени, как смещены подшипники на фиг. 7. Отсюда следует, что более значительное разделение подшипников, как показано на фиг. 7, увеличивает крутящий момент. Вышеописанные конкретные варианты осуществления изобретения относятся к двухтактным двигателям, следует отметить, что общие принципы относятся к двух- и четырехтактным двигателям. Ниже отмечается, что многие изменения и модификации могут производиться в двигателях, как показано в вышеприведенных примерах без отступления от пределов и объема изобретения.

5, 10, 12 или более цилиндрами. Позволяет сократить линейные размеры мотора по сравнению с рядным расположением цилиндров.

VR-образный
"VR" аббревиатура двух немецких слов, обозначающих V-образный и R- рядный, т.е "v-образно-рядный". Двигатель разработан компанией Volkswagen и представляет собой симбиоз V-образного двигателя с экстремально малым углом развала 15° и рядного двигателя.Его шесть цилиндров расположены V-образно под углом 15° в отличие от традиционных V-образных двигателей, имеющих угол 60° или 90°. Поршни расположены в блоке в шахматном порядке. Совокупность достоинств обоих типов двигателей привела к тому, что двигатель VR6 стал настолько компактным, что позволил накрыть оба ряда цилиндров одной общей головкой, в отличие от обычного V-образного двигателя. В результате двигатель VR6 получился существенно меньше по длине, чем рядный 6 цилиндровый, и меньше по ширине, чем обычный V-образный 6-цилиндровый двигатель. Ставился с 1991г (1992 модельный) на автомобили Volkswagen Passat, Golf, Corrado, Sharan. Имеет заводские индексы "AAA" объемом 2.8 литра, мощностью 174 л/с и "ABV" объемом 2.9 литра и мощностью 192 л/с.

Оппозитный двигатель - поршневой двигатель внутреннего сгорания, в котором угол между рядами цилиндров составляет 180 градусов. В автомобильной и мототехнике оппозитный двигатель применяется для снижения центра тяжести, вместо традиционного V-образного, так же оппозитное расположение поршней позволяет им взаимно нейтрализовывать вибрации, благодаря чему двигатель имеет более плавную рабочую характеристику.
Наиболее широкое распространение оппозитный двигатель получил в модели Volkswagen Kaefer (Beetle, в английском варианте) выпущенной за годы производства (с по 2003 год) в количестве 21 529 464 штук.
Компания Porsche использует его в большинстве своих спортивных и гоночных моделях серий, GT1 , GT2 и GT3.
Оппозитный двигатель является также отличительной чертой автомобилей марки Subaru , который устанавливается практически во все модели Subaru c 1963 года. Большинство двигателей этой фирмы имеют оппозитную компоновку, которая обеспечивает очень высокую прочность и жёсткость блока цилиндров, но в то же время делает двигатель сложным в ремонте. Старые двигатели серии EA (EA71, EA82 (выпускались примерно до 1994 года)) славятся своей надёжностью. Более новые двигатели серии EJ, EG, EZ (EJ15, EJ18, EJ20, EJ22, EJ25, EZ30, EG33, EZ36), устанавливаемые на различные модели Subaru с 1989 года и по настоящее время (с февраля 1989 года автомобили Subaru Legacy оснащаются оппозитными дизельными двигателями вкупе с механической коробкой передач).
Также устанавливался на румынские автомобили Oltcit Club (является точной копией Citroen Axel), с 1987 по 1993 годы. В производстве мотоциклов оппозитные двигатели нашли широкое применение в моделях фирмы BMW , а также в советских тяжёлых мотоциклах «Урал» и «Днепр».

U-образный двигатель - условное обозначение силовой установки, представляющей собой два рядных двигателя, коленчатые валы которых механически соединены при помощи цепи или шестерней.
Известные примеры использования: спортивные автомобили - Bugatti Type 45 , опытный вариант Matra Bagheera ; некоторые судовые и авиационные двигатели.
U-образный двигатель с двумя цилиндрами в каждом блоке обозначается иногда как square four .

Конфигурация двигателя внутреннего сгорания с расположением цилиндров в два ряда один напротив другого (обычно один над другим) таким образом, что поршни расположенных друг напротив друга цилиндров движутся навстречу друг другу и имеют общую камеру сгорания. Коленвалы механически соединены, мощность отбирается с одного из них, или с обоих (например, при приводе двух гребных винтов). Двигатели этой схемы в основном двухтактные с турбонаддувом. Эта схема применяется на авиадвигателях, танковых двигателях (Т-64 , Т-80УД, Т-84 , Chieftain), двигателях тепловозов (ТЭ3 , 2ТЭ10) и больших морских судовых дизелях. Встречается и другое название этого типа двигателей - двигатель с противоположно-движущимися поршнями (двигатель с ПДП).


Принцип действия:
1 впуск
2 приводной нагнетатель
3 воздухопровод
4 предохранительный клапан
5 выпускной КШМ
6 впускной КШМ (запаздывает на ~20° относительно выпускного)
7 цилиндр со впускными и выпускными окнами
8 выпуск
9 рубашка водяного охлаждения
10 свеча зажигания

Ротативный двигатель - звездообразный двигатель воздушного охлаждения, основанный на вращении цилиндров (обычно представленных в нечетном количестве) вместе с картером и воздушным винтом вокруг неподвижного коленчатого вала, закреплённого на моторной раме. Подобные двигатели широко использовались во времена первой мировой войны и гражданской войны в России. На протяжений этих войн эти двигатели превосходили по удельной массе двигатели водяного охлаждения, поэтому в основном использовались именно они (в истребителях и самолетах-разведчиках) .
Звёздообразный двигатель (радиальный двигатель ) - поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы. Звездообразный двигатель имеет небольшую длину и позволяет компактно размещать большое количество цилиндров. Нашел широкое применение в авиации.
Звёздообразный двигатель отличается от других типов конструкцией кривошипно-шатунного механизма. Один шатун является основным, он похож на шатун обычного двигателя с рядным расположением цилиндров, остальные являются вспомогательными и крепятся к основному шатуну по его периферии (такой же принцип применяется в V-образных двигателях). Недостатком конструкции звездообразного двигателя является возможность протекания масла в нижние цилиндры во время стоянки, в связи с чем требуется перед запуском двигателя убедиться в отсутствии масла в нижних цилиндрах. Запуск двигателя при наличии масла в нижних цилиндрах приводит к гидроудару и поломке кривошипно-шатунного механизма.
Четырёхтактные звездообразные моторы имеют нечётное число цилиндров в ряду - это позволяет давать искру в цилиндрах «через один».


Ро́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в году инженером компании NSU Вальтером Фройде, ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя.
Особенность двигателя - применение трёхгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде.

Конструкция
Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй - статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.
Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.
Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Конфигурация двигателя W
Двигатель разработан компаниями Audi и Volkswagen и представляет собой два V-образно расположенных двигателя. Крутящий момент снимается с обоих коленвалов.

Роторно-лопастной двигатель внутреннего сгорания (РЛД, двигатель Вигрия́нова), конструкция которого разработана в 1973 году инженером Михаилом Степановичем Вигрияновым. Особенность двигателя - применение вращающегося сложносоставного ротора размещённого внутри цилиндра и состоящего из четырех лопастей.
Конструкция На паре соосных валов установлены по две лопасти, разделяющие цилиндр на четыре рабочие камеры. Каждая камера за один оборот совершает четыре рабочих такта (набор рабочей смеси, сжатие, рабочий ход и выброс отработанных газов). Таким образом, в рамках данной конструкции возможно реализовать любой четырехтактный цикл. (Ничто не мешает использовать данную конструкцию для работы парового двигателя, только лопастей придется использовать две вместо четырех.)


Уравновешанность двигателей


Степень уравновешенности
(зеленая ячейка- уравновешенные силы или моменты, красная -
свободные)























Силы инерции первого
порядка

Все схемы открываются в полный размер по клику.

ВСТРЕЧНОЕ ДВИЖЕНИЕ

Особенность двухтактного дизеля профессора Питера Хофбауэра, посвятившего 20 лет своей жизни работе в концерне «Фольксваген», - два поршня в одном цилиндре, движущиеся навстречу друг другу. И название это подтверждает: Opposed Piston Opposed Cylinder (OPOC) - встречные поршни, встречные цилиндры.

Похожую схему еще в середине прошлого века использовали в авиации и танкостроении, например, на немецких «Юнкерсах» или советском танке T-64. Дело в том, что в традиционном двухтактном двигателе оба окна для газообмена перекрывает один поршень, а в двигателях с встречными поршнями в зоне хода одного поршня располагается впускное окно, в зоне хода второго - выпускное. Такая конструкция позволяет раньше открывать выпускное окно и благодаря этому лучше очищать камеру сгорания от отработавших газов. И заранее закрывать, чтобы сберечь некоторое количество рабочей смеси, которое у двухтактного двигателя обычно выбрасывается в выхлопную трубу.

В чем же изюминка конструкции профессора? В центральном (между цилиндрами) расположении коленвала, обслуживающего сразу все поршни. Это решение привело к довольно замысловатой конструкции шатунов. Их по паре на каждой шейке коленвала, причем на внешние поршни приходится по паре шатунов, расположенных по обе стороны цилиндра. Это схема позволила обойтись одним коленвалом (у прежних моторов их было два, размещенных по краям двигателя) и сделать компактный, легкий агрегат. В четырехтактных двигателях циркуляцию воздуха в цилиндре обеспечивает сам поршень, в моторе OPOC - турбонаддув. Для лучшей эффективности быстро разогнать турбину помогает электромотор, который в определенных режимах становится генератором и рекуперирует энергию.

Опытный образец, сделанный для армии без оглядки на экологические нормы, при массе 134 кг развивает 325 л.с. Подготовлен и гражданский вариант - с примерно на сотню сил меньшей отдачей. Как заявляет создатель, в зависимости от исполнения мотор ОРОС на 30–50% легче прочих дизелей сравнимой мощности и в два - четыре раза компактнее. Даже по ширине (это самое внушительное габаритное измерение) ОРОС всего вдвое превосходит один из самых компактных автомобильных агрегатов в мире - двухцилиндровый фиатовский «Твинэйр».

Мотор OPOC - образец модульной конструкции: двухцилиндровые блоки можно компоновать в многоцилиндровые агрегаты, соединяя их электромагнитными муфтами. Когда полная мощность не требуется, для экономии топлива один или несколько модулей могут отключаться. В отличие от обычных двигателей с отключаемыми цилиндрами, где коленвал шевелит даже «отдыхающие» поршни, механических потерь можно избежать. Интересно, а как обстоят дела с топливной экономичностью и вредными выбросами? Разработчик предпочитает обходить этот вопрос молчанием. Понятное дело - тут позиции двухтактников традиционно слабы.

РАЗДЕЛЬНОЕ ПИТАНИЕ

Еще один пример ухода от традиционных догм. Кармело Скудери покусился на святое правило четырехтактных моторов: весь рабочий процесс должен происходить строго в одном цилиндре. Изобретатель поделил цикл между двумя цилиндрами: один отвечает за впуск смеси и ее сжатие, второй - за рабочий ход и выпуск. При этом традиционные четыре такта двигатель, именуемый мотором с разделенным циклом (SCC - Split Cycle Combustion), проходит всего за один оборот коленвала, то есть в два раза быстрее.

Вот как этот мотор работает. В первом цилиндре поршень сжимает воздух и подает его в соединительный канал. Клапан открывается, форсунка впрыскивает топливо, и смесь под давлением врывается во второй цилиндр. Сгорание в нем начинается при движении поршня вниз, в отличие от двигателя Отто, где смесь поджигают чуть раньше, чем поршень достигнет верхней мертвой точки. Таким образом, сгорающая смесь не препятствует в начальной стадии горения движущему навстречу поршню, а, наоборот, подталкивает его. Создатель мотора обещает удельную мощность в 135 л.с. с литра рабочего объема. Причем при значительном сокращении вредных выбросов благодаря более эффективному сгоранию смеси - например, с уменьшением выхода NOx на 80% в сравнении с этим же показателем для традиционного ДВС. Заодно утверждают, что SCC на 25% экономичнее равных по мощности атмосферных моторов. Однако лишний цилиндр - это дополнительная масса, увеличение габаритов, возрастающие потери на трение. Что-то не верится... Особенно если взять в пример новое поколение наддувных двигателей, сделанных под девизом даунсайзинга.

Кстати, для этого двигателя придумана оригинальная схема рекуперации и наддува «в одном флаконе» под названием Air-Hybrid. Во время торможения двигателем цилиндр рабочего хода отключается (клапаны закрыты), а цилиндр сжатия наполняет специальный резервуар сжатым воздухом. При разгоне происходит обратное: не работает цилиндр сжатия, а в рабочий нагнетается запасенный воздух - своего рода наддув. Собственно, при такой схеме не исключается и полный пневморежим, когда воздух будет толкать поршни в одиночку.

МОЩНОСТЬ ИЗ ВОЗДУХА

Профессор Лино Гуззелла также использовал идею накопления сжатого воздуха в отдельном резервуаре: один из клапанов открывает путь от баллона к камере сгорания. В остальном это обычный двигатель с турбонаддувом. Опытный образец построили на базе 0,75-литрового двигателя, предложив его как замену… 2-литровому атмосферному мотору.

Разработчик для оценки эффективности своего творения предпочитает сравнивать его с гибридными силовыми агрегатами. Причем при схожей экономии топлива (около 33%) конструкция Гуззеллы удорожает мотор всего лишь на 20% - сложная бензоэлектрическая установка обходится почти в десять раз дороже. Однако в тестовом образце топливо экономится не столько за счет наддува из баллона, сколько благодаря малому рабочему объему самого двигателя. Но перспективы у сжатого воздуха в работе обычного ДВС все же есть: его можно использовать для пуска мотора в режиме «старт-стоп» или для движения автомобиля на малых скоростях.

КРУТИТСЯ, ВЕРТИТСЯ ШАР…

Среди необычных ДВС мотор Герберта Хюттлина выделяется наиболее примечательной конструкцией: традиционные поршни и камеры сгорания здесь размещены внутри шара. Поршни движутся в нескольких направлениях. Во-первых, навстречу друг другу, образуя между собой камеры сгорания. Кроме того, они соединены попарно в блоки, посаженные на единую ось и вращающиеся по хитрой траектории, заданной кольцевой фигурной шайбой. Корпус поршневых блоков объединен с шестерней, передающей крутящий момент на выходной вал.

Из-за жесткой связи между блоками при наполнении смесью одной камеры сгорания одновременно происходит выпуск отработавших газов в другой. Таким образом, за поворот поршневых блоков на 180 градусов происходит 4-тактный цикл, за полный оборот - два рабочих цикла.

Первый показ шарового двигателя на Женевском автосалоне привлек всеобщее внимание. Концепция, безусловно, интересная - за работой 3D-модели можно наблюдать часами, пытаясь разобраться, как работает та или иная система. Однако за красивой идеей должно последовать воплощение в металле. А разработчик пока ни слова не говорит о хотя бы приблизительных значениях основных показателей агрегата - мощности, экономичности, экологичности. И, главное, о технологичности и надежности.

МОДНАЯ ТЕМА

Роторно-лопастной двигатель изобрели чуть меньше века назад. И, наверное, еще долго не вспоминали бы о нем, не появись амбициозный проект российского народного автомобиля. Под капотом «ё-мобиля» пусть и не сразу, но должен появиться именно роторно-лопастной двигатель, да еще в паре с электромотором.

Вкратце о его устройстве. На оси установлены два ротора с парой лопастей на каждом, образующих камеры сгорания переменной величины. Роторы вращаются в одном направлении, но с разными скоростями - один догоняет другой, смесь между лопастями сжимается, проскакивает искра. Второй начинает движение по окружности, чтобы на следующем круге «подтолкнуть» соседа. Посмотрите на рисунок: в правой нижней четверти происходит впуск, в правой верхней - сжатие, затем против часовой стрелки - рабочий ход и выпуск. Воспламенение смеси осуществляется в верхней точке окружности. Таким образом, за один оборот ротор происходит четыре рабочих такта.

Очевидные преимущества конструкции - компактность, легкость и хороший КПД. Однако есть и проблемы. Из них главная - точная синхронизация работы двух роторов. Задача эта непростая, а решение должно быть недорогим, иначе «ё-мобиль» никогда не станет народным.

Двигатель со встречным движением поршней - конфигурация двигателя внутреннего сгорания с расположением поршней в два ряда один напротив другого в общих цилиндрах таким образом, что поршни каждого цилиндра движутся навстречу друг другу и образуют общую камеру сгорания. Коленвалы механически синхронизированы, причем выпускной вал вращается с опережением относительно впускного на 15-22°, мощность отбирается либо с одного из них, либо с обоих (например, при приводе двух гребных винтов или двух фрикционов). Компоновка автоматически обеспечивает прямоточную продувку - самую совершенную для двухтактной машины и отсутствие газового стыка.

Встречается и другое название этого типа двигателей - двигатель с противоположно-движущимися поршнями (двигатель с ПДП ).

Устройство двигателя со встречным движением поршней:

1 - впускной патрубок; 2 - нагнетатель; 3 - воздухопровод; 4 - предохранительный клапан; 5 - выпускной КШМ; 6 - впускной КШМ (запаздывает на ~20° от выпускного); 7 - цилиндр со впускными и выпускными окнами; 8 - выпуск; 9 - рубашка водяного охлаждения; 10 - свеча зажигания. изометрия

Аксиальный ДВС Duke Engine

Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал.


Классический ДВС

Если мы хотим сделать двигатель помощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров - что, естественно, также увеличивает результирующий объём двигателя.

С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.

В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС. Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней.

У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710×480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша».

Гениальный и слегка безумный инженер, изобретатель, конструктор и бизнесмен Джон Захария Делореан мечтал построить новую автомобильную империю в пику существующим, и сделать совершенно уникальный «автомобиль мечты». Все мы знаем машину DMC-12, которую называют просто DeLorean. Она не только стала звездой экрана в фильме «Назад в будущее», но и отличалась уникальными решениями во всём - начиная от алюминиевого кузова на плексигласовом каркасе и заканчивая дверями «крылья чайки». К сожалению, на фоне экономического кризиса производство машины не оправдало себя. А затем Делореан долго судился по подложному делу о наркотиках.

Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором - среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним - каждый из концов поршня должен был работать в своём цилиндре.


Чертёж из тетради Делореана

По каким-то причинам рождение двигателя не состоялось - возможно, потому, что разработка автомобиля с нуля вышло достаточно сложным предприятием. На DMC-12 устанавливали 2,8-литровый двигатель V6 совместной разработки Peugeot, Renault и Volvo мощностью 130 л. с. Пытливый читатель может изучить сканы чертежей и заметок Делореана на этой странице.


Экзотический вариант аксиального двигателя - «двигатель Требента»

Тем не менее, такие двигатели не получили широкого распространения - в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах - благодаря тому, как хорошо они вписываются в цилиндр.



Вариант под названием "Цилиндрический энергетический модуль " с двусторонними поршнями. Перпендикулярные штоки в поршнях описывают синусоиду, двигаясь по волнистой поверхности

Главная отличительная черта аксиального ДВС - компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.

Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и - ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях.

Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов - движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов.

Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше.

Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие - к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя - в зависимости от ваших целей).

Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому, это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.

Демострация малых вибраций двигателя Duke

Аксиальный ДВС Duke Engine

Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал.


Классический ДВС

Если мы хотим сделать двигатель помощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров — что, естественно, также увеличивает результирующий объём двигателя.

С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.

В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС . Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней.

У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710×480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша».

Гениальный и слегка безумный инженер, изобретатель, конструктор и бизнесмен Джон Захария Делореан мечтал построить новую автомобильную империю в пику существующим, и сделать совершенно уникальный «автомобиль мечты». Все мы знаем машину DMC-12, которую называют просто DeLorean. Она не только стала звездой экрана в фильме «Назад в будущее», но и отличалась уникальными решениями во всём — начиная от алюминиевого кузова на плексигласовом каркасе и заканчивая дверями «крылья чайки». К сожалению, на фоне экономического кризиса производство машины не оправдало себя. А затем Делореан долго судился по подложному делу о наркотиках.

Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором — среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним — каждый из концов поршня должен был работать в своём цилиндре.


Чертёж из тетради Делореана

По каким-то причинам рождение двигателя не состоялось — возможно, потому, что разработка автомобиля с нуля вышло достаточно сложным предприятием. На DMC-12 устанавливали 2,8-литровый двигатель V6 совместной разработки Peugeot, Renault и Volvo мощностью 130 л. с. Пытливый читатель может изучить сканы чертежей и заметок Делореана на этой странице .


Экзотический вариант аксиального двигателя - «двигатель Требента»

Тем не менее, такие двигатели не получили широкого распространения — в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах — благодаря тому, как хорошо они вписываются в цилиндр.



Вариант под названием "Цилиндрический энергетический модуль " с двусторонними поршнями. Перпендикулярные штоки в поршнях описывают синусоиду, двигаясь по волнистой поверхности

Главная отличительная черта аксиального ДВС — компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.

Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и — ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях.

Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов — движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов.

Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше.

Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие — к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя — в зависимости от ваших целей).

Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому. это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.


Демострация малых вибраций двигателя Duke

Запись опубликована автором в рубрике Без рубрики. Добавьте в закладки .


Владельцы патента RU 2477559:

Изобретение относится к области электротехники и энергетического машиностроения, а именно - к асинхронным электрическим двигателям с короткозамкнутым ротором, и может быть использован, например, для привода мощных насосов. Предлагаемый аксиальный электрический двигатель выполнен стационарным, открытым на участке земли, корпус его составлен из нижнего пояса, включающего фундаментную плиту с нижним опорным узлом, и верхнего пояса, включающего скрепленную с фундаментом звездообразную сферическую ферму, составленную симметрично из упорных балок, стянутых в центре осевым опорно-центровочным узлом. Между нижним опорным узлом и осевым опорно-центровочным узлом установлено рабочее колесо большого диаметра, на торце которого закреплен собственно короткозамкнутый ротор, отделяемый воздушным зазором от магнитопровода статора, сооруженного на фундаментной плите на подиуме. Вал рабочего колеса вверху соединяют с нагрузкой посредством муфты. Технический результат, достигаемый при использовании настоящего изобретения, состоит в обеспечении вращающих моментов большой величины в диапазоне угловых скоростей вращения 50-500 об/мин аксиального электрического двигателя при одновременном упрощении его конструкции. 3 ил.

Изобретение относится к нетрадиционной электроэнергетике, а более конкретно к электрическим асинхронным двигателям переменного тока с короткозамкнутым ротором.

Известен аксиальный электрический двигатель переменного тока, содержащий закрытый корпус с узлами крепления к опоре, размещенный в нем неподвижный статор, состоящий из сердечника с обмоткой и подвижный (вращающийся) короткозамкнутый ротор с горизонтальной осью вращения, установленный в подшипниках фланцев с обеих сторон статора, скрепленных с корпусом. Такой двигатель может быть установлен в любом положении в пространстве и не привязан к одному месту. Такие электрические двигатели хорошо освоены промышленностью, выпускаются различной номенклатуры и широко применяются. См., например, книгу Проектирование электрических машин, авторы И.П.Копылов, Б.К.Клоков и др. изд. «Высшая школа», 2002 г., Москва, стр.29-32.

Недостаток таких двигателей - малые высоты оси вращения роторов, ограничивающие наружный диаметр сердечника статора и не позволяющего достигать большей мощности.

Близкого прототипа к заявляемой конструкции в специальной технической литературе и патентном фонде не найдено.

Цель изобретения - создание специального электрического аксиального двигателя переменного тока простой конструкции с ротором большого диаметра (порядка нескольких метров и более) с частотой вращения 50-300 об/мин, развивающего момент вращения большой величины.

Поставленная цель достигается тем, что двигатель выполнен на участке земли недвижимым стационарным открытым с неподвижным статором и подвижным (вращающимся) рабочим колесом с вертикальной осью вращения, корпус его с нижним и верхним опорными узлами выполнен горизонтальным фундаментом в виде круга, по окружности которого сооружен кольцевой подиум с укрепленной на нем сверху выверенной горизонтальной установочной плитой, на которой собран кольцевой сердечник магнитопровода статора высотой h из шихтованной электротехнической стали, спрессованный прижимной плитой и стянутый рядами шпилек с установочной плитой, в пазы сердечника уложена обмотка статора, рабочее колесо состоит из вертикального вала и радиально-последовательно скрепленных с ним в горизонтальной плоскости ступицы, диска-фермы и собственно короткозамкнутого ротора, нижняя часть вала установлена в центре окружности фундамента в нижнем опорном узле в подшипниках масляной ванны, верхняя часть вала установлена в верхнем опорном узле, состоящем из упорных колонн, упорных балок и осевого опорно-центровочного узла, в котором упорные колонны сооружены симметрично вокруг подиума с равным промежутком между ними с усиленным фундаментом, соединенным монолитно с фундаментом, вверху снабжены крепежными элементами, которыми скреплены внешними концами упорные балки, а внутренние концы их скреплены с осевым опорно-центровочным узлом, снабженным радиальными подшипниками, в котором установлена верхняя часть вала рабочего колеса, соединенная посредством муфты сцепления с потребителем, ступица выполнена в виде диска и соединена в центральной части с валом посредством узла передачи момента вращения, а с внешней с диском-фермой диаметром несколько метров и более, состоящего из радиально-кольцевого объемного жесткого каркаса с верхней и нижней обшивкой, снабженного в периферийной торцевой части собственно короткозамкнутым ротором, выполненным из цилиндра алюминиевого сплава радиальной толщины z с наружным радиусом R от оси вала, высотой h, снабженного внедренными в него через равный интервал «заподлицо» с наружной торцевой поверхностью стержнями из медного сплава, соединенными монолитно сверху и снизу медными шинами в виде обручей, жестко соединенными с радиально-кольцевым каркасом, рабочее колесо по высоте установлено так, что его собственно короткозамкнутый ротор находится напортив сердечника статора и совпадает с ним по высоте, при этом их разделяет по всей окружности цилиндра воздушный зазор величиной δ, обмотку статора соединяют с внешним источником тока.

Конструкция асинхронного электрического двигателя показана на представленных чертежах. На фиг.1 показана схематически конструкция аксиального электрического двигателя, общий вид, разрез по вертикальной диаметральной плоскости («А-А»). На фиг.2 показана схематически конструкция аксиального электрического двигателя, вид сверху. На фиг.3 схематически показана активная индуктивная часть рабочего колеса аксиального электрического двигателя, разрез по вертикальной радиальной плоскости.

Условные обозначения в тексте.

R - (м) радиус ротора аксиального электрического двигателя, расстояние от оси вала до наружной поверхности цилиндра из алюминиевого сплава,

z - (мм) радиальная толщина цилиндра из алюминиевого сплава,

h - (мм) высота сердечника статора, высота цилиндра из алюминиевого сплава собственно ротора (в технической литературе эта величина обозначается символом, т.к. направлена вдоль оси машины),

δс - (мм) величина воздушного зазора между статором и ротором в длительном стояночном положении при низкой температуре окружающей среды.

δр - (мм) величина воздушного зазора между статором и ротором в рабочем состоянии (длительный установившийся режим работы при номинальных оборотах, номинальном токе, номинальной или повышенной температуре).

Позиции на чертежах.

Аксиальный электрический двигатель устроен (см. фиг.1, 7). На некотором участке 1 земли подготавливают горизонтальную площадку, размером порядка 1,5 R, на ней выполняют горизонтальный фундамент 2. В соответствии с документацией под будущим фундаментом прокладывают технологические туннели, трубопроводы, кабели и т.п., а в самом фундаменте устанавливают люки, анкеры, датчики оборудования. По окружности фундамента сооружают подиум 3, который снабжен анкерами для крепления установочной плиты 4, которая по всей ее наружной поверхности должна быть строго выверена в горизонтальной плоскости. На установочной плите 4 сооружают статор 5, кольцевой сердечник магнитопровода которого высотой h собирают из пластин шихтованной электротехнической стали и спрессовывают прижимной плитой 6 двумя рядами стягивающих шпилек 7. При сборке статора 5 выполняют условия: отсутствие заусенцев на пластинах статора и точное, в пределах 1-2 мм, соответствии внутреннего диаметра магнитопровода статора размеру (R+δp) мм, после чего в его пазы укладывают обмотку 8 статора, провода от которой подводят к источнику трехфазного тока.

Рабочее колесо 10 состоит из вертикального вала 9 и радиально-последовательно скрепленных с ним в горизонтальной плоскости ступицы, диска-фермы и собственно короткозамкнутого ротора. Ступица выполнена в виде диска и соединена в центральной части с валом 9 посредством узла передачи момента вращения, например, шпоночного или шлицевого соединения, а с внешней стороны с диском-фермой, выполненной радиально-кольцевым объемным каркасом с верхней и нижней обшивкой. Диск-ферма и ступица соединены посредством разъемного болтового соединения.

В периферийной торцевой части рабочее колесо 10 снабжено собственно короткозамкнутым ротором, который выполнен из цилиндра алюминиевого сплава 11 (см. фиг.3) радиальной толщины z, внешний радиус которого R от оси вала 9, высотой h, снабженного внедренными в него через равный интервал «заподлицо» с наружной торцевой поверхностью стержнями 12 из медного сплава, соединенными монолитно, например сваркой, сверху и снизу медными шинами 13 в виде обручей, жестко соединенными с радиально-кольцевым каркасом.

Рабочее колесо 10 аксиального электрического двигателя может быть выполнено разного размера, от диаметра порядка 1,5-2,5 м до десятков метров. От величины диаметра зависит его конструкция, применяемые материалы, технология изготовления, сборки и методы доставки потребителю. При малых размерах рабочего колеса 10 (фиг.1), его выполняют единым неразъемным узлом и транспортируют в специальной таре к месту сооружения аксиального электрического двигателя. При больших размерах рабочего колеса 10 его конструкция и технология изготовления усложняются в связи с необходимостью выполнения ряда противоречивых требований, что является предметом отдельных технических решений.

Рабочее колесо 10 устанавливают в центре круга фундамента 2. Нижняя часть его вала 9 установлена в нижнем опорном узле 14 в подшипниках опорно-масляной ванны. Верхний опорный узел с валом 9 выполнен следующим образом. На том же участке 1 земли за подиумом 3 по окружности с равным интервалом сооружают упорные колонны 15, которые выполняют монолитно с фундаментом 2, верхняя часть их снабжена крепежными элементами, например болтами, с которыми они соединяются с внешними концами упорных балок 1-6, внутренние концы которых также посредством болтового соединения скреплены с осевым опорно-центровочным узлом 17, снабженным радиальными подшипниками, в которые устанавливают верхнюю часть вала. 9. Количество упорных балок 16 зависит от диаметра рабочего колеса 10 и определяется в результате прочностного расчета корпуса, верхний опорный узел должен обеспечить жесткость всей конструкции аксиального электрического двигателя при максимальных вращающих моментах рабочего колеса 10.

Рабочее колесо 10 устанавливают так, чтобы его короткозамкнутый ротор высотой h был точно установлен напротив сердечника статора 5 и совпадал с ним по высоте h, при этом внешнюю поверхность короткозамкнутого ротора рабочего колеса 10 и внутреннюю поверхность магнитопровода статора 5 по всей окружности должен разделять установочный (стояночный) воздушный зазор δ с постоянной величины, ориентировочно 6-9 мм.

При создании рабочего колеса 10 на определенную частоту вращения и заданный вращающий момент необходимо выполнить не только расчет прочности в статике, но и динамический расчет, при этом учесть, что механические напряжения во всех узлах не должны превосходить предела прочности материала, а в наиболее опасных и важных конструктивных элементах - короткозамкнутых медных шинах-ободах не должны превосходить предела текучести меди.

Кроме того, радиальная деформация от махового момента центробежных сил (упругая деформация растяжения), суммированная с продольной деформацией от теплового удлинения в установившемся рабочем режиме при номинальной нагрузке, не должна превышать определенной величины, являясь в то же время полезной деформацией, уменьшающей воздушный зазор до величины δр, положительно влияющей на характеристики асинхронного электрического двигателя.

Аксиальный электрический двигатель работает: при включении обмотки 8 статора к источнику переменного электрического тока, в магнитопроводе сердечника статора 5 возникает вращающееся электромагнитное поле, которое взаимодействует с собственно короткозамкнутым ротором рабочего колеса 10 и вращает его с расчетной угловой частотой. Окружная сила, действуя на расстоянии R создает непрерывный момент вращения расчетной величины валу 9, который через муфту сцепления 18 приводит в действие нагрузку - насос большой производительности для подачи пульпы (тяжелая горная порода с водой) на агрегаты обогатительной фабрики.

Техническая эффективность изобретения в том, что создана конструкция экономичного аксиального электрического двигателя переменного тока, передающего нагрузке момент вращения значительной величины.

Аксиальный электрический двигатель переменного тока, содержащий закрытый корпус с узлами крепления к опоре, размещенный в нем неподвижный статор, состоящий из сердечника с обмоткой, и подвижный (вращающийся) короткозамкнутый ротор с горизонтальной осью вращения, установленный в подшипниках фланцев с обеих сторон статора, скрепленных с корпусом, отличающийся тем, что двигатель выполнен на участке земли недвижимым, стационарным открытым с неподвижным статором и подвижным (вращающимся) рабочим колесом с вертикальной осью вращения, корпус его, с нижним и верхним опорными узлами, выполнен горизонтальным фундаментом в виде круга, по окружности которого сооружен кольцевой подиум с укрепленной на нем сверху выверенной горизонтальной установочной плитой, на которой собран кольцевой сердечник магнитопровода статора высотой h из шихтованной электротехнической стали, спрессованный прижимной плитой и стянутый рядами шпилек с установочной плитой, в пазы сердечника уложена обмотка статора, рабочее колесо состоит из вертикального вала и радиально-последовательно скрепленных с ним в горизонтальной плоскости ступицы, диска-фермы, и собственно короткозамкнутого ротора, нижняя часть вала установлена в центре окружности фундамента в нижнем опорном узле в подшипниках масляной ванны, верхняя часть вала установлена в верхнем опорном узле, состоящем из упорных колонн, упорных балок и осевого опорно-центровочного узла, в котором упорные колонны сооружены симметрично вокруг подиума с равным промежутком между ними с усиленным фундаментом, соединенным монолитно с фундаментом, вверху снабжены крепежными элементами, которыми скреплены внешними концами упорные балки, а внутренние концы их скреплены с осевым опорно-центровочным узлом, снабженным радиальными подшипниками, в котором установлена верхняя часть вала рабочего колеса, соединенная посредством муфты сцепления с потребителем, ступица выполнена в виде диска и соединена в центральной части с валом посредством узла передачи момента вращения, а с внешней - с диском-фермой диаметром несколько метров и более, состоящим из радиально-кольцевого объемного жесткого каркаса с верхней и нижней обшивкой, снабженным в периферийной торцевой части собственно короткозамкнутым ротором, выполненным из цилиндра алюминиевого сплава радиальной толщины z с наружным радиусом R от оси вала высотой h, снабженного внедренными в него через равный интервал «заподлицо» с наружной торцевой поверхностью стержнями из медного сплава, соединенными монолитно сверху и снизу медными шинами в виде обручей, жестко соединенными с радиально-кольцевым каркасом, рабочее колесо по высоте установлено так, что его собственно короткозамкнутый ротор находится напротив сердечника статора и совпадает с ним по высоте, при этом их разделяет по всей окружности цилиндра воздушный зазор величиной δ, обмотку статора соединяют с внешним источником тока.

Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал. Если мы хотим сделать двигатель мощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров - что, естественно, также увеличивает результирующий объём двигателя. С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.

Первый аксиальный двигатель

В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС . Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней. У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710х480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша». Не остались в стороне и советские инженеры. В 1916-м году появился двигатель конструкции А. А. Микулина и Б. С. Стечкина, а в 1924 г - двигатель Старостина. Об этих двигателях знают, пожалуй, только любители истории авиации. Известно, что детальные испытания, проведенные в 1924 г, выявили повышенные потери на трение и большие нагрузки на отдельные элементы таких двигателей.

Гениальный и слегка безумный инженер, изобретатель, конструктор и бизнесмен Джон Захария Делореан мечтал построить новую автомобильную империю в пику существующим, и сделать совершенно уникальный «автомобиль мечты». Все мы знаем машину DMC-12, которую называют просто DeLorean. Она не только стала звездой экрана в фильме «Назад в будущее», но и отличалась уникальными решениями во всём - начиная от алюминиевого кузова на плексигласовом каркасе и заканчивая дверями «крылья чайки». К сожалению, на фоне экономического кризиса производство машины не оправдало себя. А затем Делореан долго судился по подложному делу о наркотиках. Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором - среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним - каждый из концов поршня должен был работать в своём цилиндре. По каким-то причинам рождение двигателя не состоялось - возможно, потому, что разработка автомобиля с нуля вышло достаточно сложным предприятием. На DMC-12 устанавливали 2,8-литровый двигатель V6 совместной разработки Peugeot, Renault и Volvo мощностью 130 л. с.

Экзотический вариант аксиального двигателя - «двигатель Требента»

Тем не менее, такие двигатели не получили широкого распространения - в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах - благодаря тому, как хорошо они вписываются в цилиндр.

Главная отличительная черта аксиального ДВС - компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.

Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и - ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях. Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов - движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов. Система впуска и выпуска весьма схожа с двухтактным двигателем. Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше. Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие - к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя - в зависимости от ваших целей). Основные преимущества: Очень низкий уровень вибрации. Только три форсунки и три свечи зажигания на пять цилиндров, плюс нет клапанов, автоматически в разы уменьшается количество элементов. Может работать на самых разнообразных видах топлива. Легче и компактнее, чем традиционные двигатели внутреннего сгорания.

Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому, это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.

ЧИТАЙТЕ ТАКЖЕ НА САЙТЕ

Honda NR500 8 клапанов на цилиндр с двумя шатунами на цилиндр, очень редкий, очень интересный и довольно дорогой мотоцикл в мире, хондовцы для гонок мудрили и намудрили))) Было выпущенно около 300 штук и сейчас цены...

В 1989-м году Тойота представила на рынок новое семейство двигателей, серию UZ. В линейки появилось сразу три двигателя, отличающихся рабочим объемом цилиндров, 1UZ-FE, 2UZ-FE и 3UZ-FE. Конструктивно они представляют собой V-образную восьмерку с отде...

Лучшие статьи по теме